Bihar Board Class 11 Chemistry Solutions Chapter 9 हाइड्रोजन

Bihar Board Class 11 Chemistry Solutions Chapter 9 हाइड्रोजन Textbook Questions and Answers, Additional Important Questions, Notes.

BSEB Bihar Board Class 11 Chemistry Solutions Chapter 9 हाइड्रोजन

Bihar Board Class 11 Chemistry हाइड्रोजन Text Book Questions and Answers

अभ्याम के प्रश्न एवं उनके उत्तर

प्रश्न 9.1
हाइड्रोजन के इलेक्ट्रॉनिक विन्यास के आधार पर आवर्त सारणी में इसकी स्थिति को युक्तिसंगत ठहराइए।
उत्तर:
हाइड्रोजन एक विशिष्ट तत्व है, जो आवर्त सारणी के वर्ग 1 की क्षार धातुओं तथा वर्ग 17 के हैलोजेन गैसों के गुण प्रदर्शित करता है। इस दोहरे गुण का कारण हाइड्रोजन की आवर्त सारणी में स्थिति विवादास्पद बनी हुई है।

हाइड्रोजन के दोहरे व्यवहार का कारण इसका इलेक्ट्रॉनिक विन्यास है। हाइड्रोजन s – ब्लॉक का प्रथम तत्व है। इसका इलेक्ट्रॉनिक विन्यास 1s1 है अर्थात् हाइड्रोजन परमाणु के बाहरी कोश, जो पहला कोश भी है, में केवल एक इलेक्ट्रॉन है। हाइड्रोजन एक इलेक्ट्रॉन त्याग कर H+ आयन या धनायन अर्थात् प्रोटॉन दे सकता है और एक इलेक्ट्रॉन ग्रहण करके H आयन या ऋणायन बना सकता है।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

हाइड्रोजन के सन्दर्भ में उपर्युक्त तथ्य से आवर्त सारणी में इसकी स्थिति निम्नलिखित बिन्दुओं से समझी जा सकती है –
हाइड्रोजन की क्षार धातुओं (वर्ग 1 के तत्वों) से समानता (Similarities of Hydrogen with Alkali Metals)

1. इलेक्ट्रॉनिक विन्यास (Electronic configuration):
इलेक्ट्रॉनिक विन्यास समान है और इनके अन्तिम कोश में एक इलेक्ट्रॉन s1 है।
1H = 1s1 11Na = 1s2, 2s2 2p6, 3s1

2. विद्युत-धनात्मक गुण (Electropositive character):
एक इलेक्ट्रॉन त्यागकर धनायन देते हैं।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
इस व्यवहार को इस तथ्य से प्रबल समर्थन मिलता है कि जब अम्लीकृत जल का विद्युत-अपघटन किया जाता है तो कैथोड पर हाइड्रोजन मुक्त होती है। इसी प्रकार गलित सोडियम क्लोराइड के विद्युत अपघटन पर कैथोड पर सोडियम (क्षार धातु) मुक्त होती

3. Berita PUT STARIT (Oxidation state):
हाइड्रोजन तथा क्षार धातु अपने यौगिकों में +1 ऑक्सीकरण अवस्था दर्शाते हैं।
उदाहरणार्थ:
HCl, NaCl आदि।

4. रासायनिक बन्धुता (Chemical affinity):
हाइड्रोजन तथा क्षार धातुएँ विद्युत धनात्मक प्रकृति के होते हैं। अतः इनमें विद्युत-ऋणी तत्वों के प्रति बन्धुता पाई जाती है अर्थात् ये तीव्रता से इनकी साथ संयोग करते हैं।
उदाहरणार्थ –
सोडियम के यौगिक: Na2O, NaCl, Na2S
हाइड्रोजन के यौगिक: H2O, HCl, H2S

5. अपचायक प्रकृति (Reducing nature):
हाइड्रोजन तथा अन्य क्षार धातु वर्ग के सदस्य प्रबल अपचायक होते हैं; क्योंकि वे उनके यौगिकों से ऑक्सीजन को हटाते हैं।
उदाहरणार्थ –
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
क्षार धातुओं से असमानता (Dis-similarities with Alkali Metals)
हाइड्रोजन क्षार धातुओं से भिन्न भी दर्शाता है। इनका वर्णन निम्नवत् है –

  • क्षार धातुएँ प्रारूपिक धातुएँ (typical metals) होती हैं, जबकि हाइड्रोजन एक अधातु है।
  • हाइड्रोजन द्विपरमाणुक (diatomic) होती है, जबकि क्षार धातुएँ एकपरमाणुक होती हैं।
  • क्षार धातुओं की आयनन ऊर्जा (सोडियम की आयनन ऊर्जा = 496 kJmol-1) हाइड्रोजन (1312 kJmol-1) की तुलना में बहुत कम होती है।
  • हाइड्रोजन के यौगिक सामान्यतः सहसंयोजक होते हैं (जैसे – HCI, H,O आदि), जबकि क्षार धातुओं के यौगिक सामान्यत: आयनिक होते हैं (जैसे – NaCl, KF आदि)।

हाइड्रोजन तथा हैलोजेन की समानता (Similarities of Hydrogen & Halogens):

1. इलेक्ट्रॉनिक विन्यास (Electronic configuration):
इलेक्ट्रॉनिक विन्यास इस कारण से समान होते हैं कि इनके बाहरी कोश में अक्रिय गैस से एक इलेक्ट्रॉन कम होता है और ये एक इलेक्ट्रॉन ग्रहण करके अक्रिय गैस की स्थायी संरचना प्राप्त कर लेते हैं।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

2. विद्युत्-ऋणात्मक गुण. (Electronegative character):
ये एक इलेक्ट्रॉन ग्रहण करके ऋणायन देते हैं।
H + e → H, X = e → X (X = हैलोजेन)

3. द्विपरमाणुक प्रकृति (Diatomic nature):
हाइड्रोजन तथा हैलोजेन दोनों द्वि-परमाणुक अणु बनाते हैं, जिसमें सहसंयोजक बन्ध होते हैं।
H – H या H2, Cl – C या Cl2

4. ऐनोड पर विमुक्ति (Liberation at anode):
हैलाइडों के जलीय विलयन विद्युत्-अपघटन पर ऐनोड पर ऋणायन देते हैं। इसी प्रकार NaH विद्युत्-अपघटन पर ऐनोड पर H आयन देता है।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

5. आयनन एन्थैल्पी (Ionisation enthalpy):
आयनन ऊर्जा लगभग समान होती है, किन्तु क्षार धातुओं से अधिक होती हैं।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

6. ऑक्सीकरण अवस्था (Oxidation state):
हैलोजेन यौगिकों में -1 ऑक्सीकरण अवस्था दर्शाते हैं तथा हाइड्रोजन भी अपने यौगिकों में (धातुओं के साथ) -1 ऑक्सीकरण अवस्था दर्शाता है।
उदाहरणार्थ –
Na+ H तथा Na+F I

7. अधात्विक प्रकृति (Non-metallic nature):
हाइड्रोजन तथा हैलोजेनों का सबसे महत्त्वपूर्ण सामान्य गुण अधात्विक प्रकृति है। दोनों प्रारूपिक अधातु हैं।

8. Aiiftant atyronta (Nature of compounds):
हाइड्रोजन तथा हैलोजन के अनेक यौगिक सहसंयोजी प्रकृति के होते हैं।
उदाहरणार्थ –
हाइड्रोजन के सहसंयोजक यौगिक: CH4, SiH4, GeH4
क्लोरीन के सहसंयोजक यौगिक: CCl4, SiCl4, GeCl4

यहाँ यह तथ्य महत्त्वपूर्ण है कि हाइड्रोजन तथा हैलोजेन परमाणु सरलता से प्रतिस्थापित किए जा सकता हैं।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

हैलोजेनों से असमानता (Dis-similarities with Halogens):
निम्नलिखित गुणधर्मों में हाइड्रोजन हैलोजेनों से भिन्नता रखता है –
1. हैलोजेन तीव्रता से हैलाइड आयन (X) बना लेते हैं, परन्तु हाइड्रोजन केवल क्षार तथा क्षारीय मृदा धातुओं के साथ यौगिकों में हाइड्राइड आयन (H) बनाता है।

2. आण्विक रूप में, H परमाणुओं पर एकाकी इलेक्ट्रॉन युग्म नहीं होता, जबकि X परमाणुओं पर ऐसे तीन युग्म होते हैं। उदाहरणार्थ –
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

3. हैलोजेन के ऑक्साइड सामान्यतयां अम्लीय होते हैं, जबकि हाइड्रोजन के ऑक्साइड उदासीन होते हैं।

निष्कर्षतः
हाइड्रोजन दोनों समूहों के साथ समान लक्षण रखता है। अतः इसे आवर्त सारणी में एक निश्चित स्थान देना कठिनाई का विषय है। चूँकि तत्वों के आवर्ती वर्गीकरण का आधार इलेक्ट्रॉनिक विन्यास है; अतः हाइड्रोजन को क्षार धातुओं के साथ वर्ग 1 में सबसे ऊपर रखा गया है, परन्तु हाइड्रोजन की यह स्थिति पूर्ण रूप से न्यायोचित नहीं है।

Bihar Board Class 11 Chemistry Solutions Chapter 9 हाइड्रोजन

प्रश्न 9.2
हाइड्रोजन के समस्थानिकों के नाम लिखिए तथा बताइए कि इन समस्थानिकों का द्रव्यमान अनुपात क्या है?
उत्तर:
हाइड्रोजन के तीन समस्थानिक हैं जिनके नाम प्रोटियम \(\left({ }_{1}^{1} \mathrm{H}\right)\) ड्यूटीरियम \(\left({ }_{2}^{1} \mathrm{H}\right)\) तथा ट्राइटियम \(\left({ }_{3}^{1} \mathrm{H}\right)\) हैं। इन समस्थानिकों का द्रव्यमान अनुपात निम्नवत् है –
\(\left({ }_{1}^{1} \mathrm{H}\right)\) : \(\left({ }_{2}^{1} \mathrm{H}\right)\) : \(\left({ }_{3}^{1} \mathrm{H}\right)\) : : 1.008 : 2.014 : 3.016

प्रश्न 9.3
सामान्य परिस्थितियों में हाइड्रोजन एक परमाण्विक की अपेक्षा द्विपरमाण्विक रूप में क्यों पाया जाता है।
उत्तर:
एक-परमाणु रूप में हाइड्रोजन के पास K कोश में केवल एक इलेक्ट्रॉन (1s1) होता है, जबकि द्विपरमाणुक अवस्था में K कोश पूर्ण (1s2) होता है। इससे तात्पर्य है कि द्विपरमाणुक रूप में हाइड्रोजन (H2) उत्कृष्ट गैस हीलियम का विन्यास प्राप्त कर लेती है। अतः यह स्थायी होती है और यह एक परमाण्विक अस्थाई होता है।

प्रश्न 9.4
‘कोल गैसीकरण’ से प्राप्त डाइ-हाइड्रोजन का उत्पादन कैसे बढ़ाया जा सकता है?
उत्तर:
कोल से संश्लेषण गैस या सिन्गैस का उत्पादन करने की क्रिया कोलगैसीकरण कहलाती है।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
सिन्गैस की उपस्थिति CO को आयरन क्रीमेट उत्प्रेरक की उपस्थिति में भाप से क्रिया कराने पर डाइ-हाइड्रोजन का उत्पादन बढ़ाया जा सकता है।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
यह भाप अंगार गैस सृति-अभिक्रिया कहलाती है।

Bihar Board Class 11 Chemistry Solutions Chapter 9 हाइड्रोजन

प्रश्न 9.5
विद्युत-अपघटन विधि द्वारा डाइहाइड्रोजन वृहद् स्तर पर किस प्रकार बनाई जा सकती है? इस प्रक्रम में विद्युत-अपघट्य की क्या भूमिका है?
उत्तर:
विद्युत-अपघटन विधि द्वारा डाइहाइड्रोजन का निर्माण (Formation of Dihydrogen by electrolytic process):
सर्वप्रथम शुद्ध जल में अम्ल तथा क्षारक की कुछ बूंदें मिलाकर इसे विद्युत का सुचालक बना लेते हैं। अब इसकी विद्युत-अपघटन (वोल्टामीटर में) करते हैं। जल के विद्युत अपघटन से ऋणोद (कैथोड) पर डाइहाइड्रोजन और धनोद (ऐनोड) पर ऑक्सीजन (सहउत्पाद के रूप में) एकत्रित होती है। ऐनोड तथा कैथोड को एक ऐस्बेस्टस डायफ्राम की सहायता से पृथक्कृत कर दिया जाता है जो मुक्त होने वाली हाइड्रोजन तथा ऑक्सीजन को मिश्रित नहीं होने देता।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
चित्र-अम्लीय जल के विद्युत-अपघटन द्वारा H2 प्राप्त करना।
H2O ⇄ H+ + OH
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
इस प्रकार प्राप्त डाइहाइड्रोजन पर्याप्त रूप से शुद्ध होती है।

विद्युत-अपघट्य की भूमिका (Role of electrolyte):
शुद्ध जल विद्युत-अपघट्य नहीं होता और न ही विद्युत का चालक होता है। शुद्ध जल में अम्ल या क्षार की कुछ मात्रा मिलाकर इसे विद्युत अपघट्य बनाया जाता है।

प्रश्न 9.6
निम्नलिखित समीकरणों को पूरा कीजिए –
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
उत्तर:
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

Bihar Board Class 11 Chemistry Solutions Chapter 9 हाइड्रोजन

प्रश्न 9.7
डाइहाइड्रोजन की अभिक्रियाशीलता के पदों में H – H बन्ध की उच्च एन्थैल्पी के परिणामों की विवेचना कीजिए।
उत्तर:
डाइहाइड्रोजन की अभिक्रियाशीलता के पदों में H – H बन्ध की उच्च एन्थैल्पी के परिणाम की विवेचना निम्न प्रकार की जा सकती है-
H – H बन्ध वियोजन एन्थैल्पी किसी तत्व के दो परमाणुओं के एकल बन्ध के लिए अधिकतम है। इसका कारण डाइहाइड्रोजन का इसके परमाणुओं में वियोजन केवल 2000K के ऊपर लगभग 0.081 प्रतिशत ही होता है, जो 5000K पर बढ़कर 955 प्रतिशत तक पहुँच जाता है। उच्च H – H बन्ध एन्थैल्पी के कारण कक्ष ताप पर डाइहाइड्रोजन अपेक्षाकृत निष्क्रिय है। यह केवल विशिष्ट परिस्थितियों में ही रासायनिक क्रिया में भाग लेता है।

प्रश्न 9.8
हाइड्रोजन के –

  1. इलेक्ट्रॉन न्यून
  2. इलेक्ट्रॉन परिशुद्ध तथा
  3. इलेक्ट्रॉन समृद्ध यौगिकों से आप क्या समझते हैं? उदाहरणों द्वारा समझाइए।

उत्तर:
1. इलेक्ट्रॉन न्यून:
इलेक्ट्रॉन न्यून हाइड्राइड, जैसा नाम से पता चलता है, परम्परागत लूईस-संरचना लिखने के लिए इनमें इलेक्ट्रॉन की संख्या अपर्याप्त होती है। इसका उदाहरण डाइबोरेन (B2H6) है। वस्तुतः आवर्त सारणी के 13 वें वर्ग के सभी तत्व इलेक्ट्रॉन न्यून यौगिक बनाते हैं। ये लूईस अम्ल की भाँति कार्य करते हैं अर्थात् ये इलेक्ट्रॉनग्राही होते हैं।

2. इलेक्ट्रॉन परिशुद्ध:
इलेक्ट्रॉन परिशुद्ध हाइड्राइड में परम्परागत लूईस संरचना के लिए आवश्यक इलेक्ट्रॉन की संख्या होती है। आवर्त सारणी के 14 वें वर्ग के सभी तत्व इस प्रकार के यौगिक (जैसे – CH4) बनाते हैं, जो चतुष्फलकीय ज्यामिति (tetrahedral geometry) के होते हैं।

3. इलेक्ट्रॉन समृद्ध:
इलेक्ट्रॉन समृद्ध हाइड्राइड इलेक्ट्रॉन आधिक्य एकाकी इलेक्ट्रॉन-युग्म के रूप में उपस्थिति होते हैं। आवर्त सारणी के 15 वें से 17 वें वर्ग तक के तत्व इस प्रकार के यौगिक बनाते हैं –

(NH3 के एकाकी युग्म, H2O में दो तथा HF में तीन एकाकी युग्म होते हैं)। ये लूईस क्षार के रूप में व्यवहार करते हैं। ये इलेक्ट्रॉनदाता होते हैं। उच्च विद्युत-ऋणात्मकता वाले परमाणु जैसे-नाइट्रोजन, ऑक्सीजन तथा फ्लुओरीन के हाइड्राइड पर एकाकी इलेक्ट्रॉन-युग्म होने के कारण अणुओं में हाइड्रोजन बन्ध बनता है, जिनके कारण अणुओं में संगुणन होता है।

प्रश्न 9.9
संरचना एवं रासायनिक अभिक्रियाओं के आधार पर बताइए कि इलेक्ट्रॉन न्यून हाइड्राइड के कौन-कौन से अभिलक्षण होते हैं?
उत्तर:
वे आण्विक हाइड्राइड जिनमें केन्द्रीय परमाणु पर अष्टक नहीं होता, इलेक्ट्रॉन न्यून हाइड्राइस कहलाते हैं। वर्ग 13 के तत्वों हाइड्राइड; जैसे –
B2H6, (AlH3)n, आदि, इलेक्ट्रॉन न्यून अणु होते हैं तब इसीलिए किसी दाता अणु; जैसे – NR3, PF3, CO आदि से इलेक्ट्रॉन युग्म ग्रहण करने की प्रवृति रखते हैं तथा योगात्मक यौगिक बनाते हैं। इन योगात्मक यौगिकों के निर्माण में इलेक्ट्रॉन न्यून हाइड्राइड लूईस अम्लों को भाँति तथा दाता अणु लूइस क्षारकों की भाँति व्यवहार करते हैं।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

Bihar Board Class 11 Chemistry Solutions Chapter 9 हाइड्रोजन

प्रश्न 9.10
क्या आप आशा करते हैं कि (CnH2n+2) कार्बनिक हाइड्राइड लूईस अम्ल या क्षार की भाँति कार्य करेंगे? अपने उत्तर को युक्तिसंगत ठहराइए।
उत्तर:
यदि दिए गए अणु के केन्द्रीय परमाणु की संयोजकता-कोश में रिक्त d – कक्षक नहीं होते तो यह दाता परमाणु अथवा दाता आयन से इलेक्ट्रॉनों के एकाकी युग्मों को ग्रहण करके योगात्मक यौगिकों का निर्माण नहीं कर सकता; अतः यह लूईस अम्ल की भाँति व्यवहार प्रदर्शित नहीं करता।

अब चूँकि CnH2n+2 में C – परमाणु (2s2 \(2 p_{x}^{1}\) \(2 p_{y}^{1}\) \(2 p_{z}^{0}\) को संयोजकता कोश में d – कक्षक नहीं हैं; इसलिए CnH2n+2 में यह परमाणु इलेक्ट्रॉनों का एकाकी युग्म ग्रहण करने योग्य नहीं है तथा लूईस अम्ल व्यवहार प्रदर्शित नहीं करता। ये हाइड्राइड सामान्य सहसंयोजी हाइड्राइडों की भाँति व्यवहार करते हैं। ये लूईस अम्ल अथवा क्षारक की भाँति कार्य नहीं करेंगे। ये इलेक्ट्रॉन-परिशुद्ध हाइड्राइड होते हैं।

प्रश्न 9.11
अरसमीकरणमितीय हाइड्राइड (nonstochiometric hydride) से आप क्या समझते हैं? क्या आप क्षारीय धातुओं से ऐसे यौगिकों की आशा करते हैं? अपने उत्तर को न्यायसंगत ठहराइए।
उत्तर:
अरसमीकरणमितीय हाइड्राइड-ऐसे हाइड्राइड जिनका निश्चित संघटन नहीं होता, अरसमीकरणमितीय हाइड्राइड कहलाते हैं। ये स्थिर अनुपात के नियम का पालन नहीं करते चूँकि इनमें रिक्त कक्षक होते हैं, अतः ये संक्रमण धातुओं द्वारा बनाए जाते हैं।

प्रश्न 9.12
हाइड्रोजन भण्डारण के लिए धात्विक हाइड्राइड किस प्रकार उपयोगी है? समझाइए।
उत्तर:
हाइड्रोजन के उच्च ज्वलनशील होने के कारण इसका भण्डारण करना एक कठिनाई का विषय है। इस कठिनाई का एक हल यह है कि हाइड्रोजन का भण्डारण इसके मैग्नीशियम, मैग्नीशियम – निकिल तथा आयरन-टाइटेनियम मिश्र-धातु के साथ बने यौगिक के टैंक (tank) के रूप में किया जाए। ये धातु-मिश्रधातु छिद्रों की भाँति हाइड्रोजन की वृहद् मात्रा को अवशोषित कर लेती हैं तथा धात्विक हाइड्राइड बनाती हैं।

धात्विक हाइड्राइड तन्त्र को जलाना अथवा इसका विस्फोट होना सम्भव नहीं होता; अतः इसे हाइड्रोजन भण्डारण की सुरक्षित युक्ति माना. जा सकता है। चूँकि हाइड्रोजन इन धातुओं से रासायनिक रूप से जुड़ी रहती है तथा यह धातु में तब तक भण्डारित रहती है जब तक कि इसे अतिरिक्त ऊर्जा न दी जाए। अतः हाइड्रोजन भण्डारण के लिए धात्विक हाइड्राइड अत्यन्त उपयोगी होते हैं।

Bihar Board Class 11 Chemistry Solutions Chapter 9 हाइड्रोजन

प्रश्न 9.13
कर्तन और वेल्डिंग में परमाण्वीय हाइड्रोजन अथवा ऑक्सी हाइड्रोजन टॉर्च किस प्रकार कार्य करती है? समझाइए।
उत्तर:
परमाण्विक हाइड्रोजन तथा ऑक्सी – हाइड्रोजन टॉर्च का उपयोग कर्तन तथा वेल्डिंग में होता है। परमाण्विक हाइड्रोजन परमाणु (जो विद्युत आर्क की सहायता से डाइहाइड्रोजन के वियोजन से बनते हैं) का पुनर्संयोग वेल्डिंग की जाने वाली धातुओं की सतह पर लगभग 4000K तक ताप उत्पन्न कर देता है ऑक्सी-हाइड्रोजन टॉर्च की ज्वाला अत्यन्त उच्च ताप (3000K से भी अधिक) उत्पन्न करती है जो वेल्डिंग कार्य में प्रयोग किया जाता है।

प्रश्न 9.14
NH3, H2O तथा HF में से किसका हाइड्रोजन बन्ध का परिमाण उच्चतम अपेक्षित है और क्यों?
उत्तर:
हाइड्रोजन बन्ध HF अणुओं में अधिक परिमाण का होता है क्योंकि फ्लुओरीन सर्वाधिक विद्युत ऋणी तत्व है। इस कारण H – F बन्ध प्रबल ध्रुवी होने के कारण प्रबल अन्तर-आण्विक हाइड्रोजन बन्ध प्रदर्शित करता है।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
गैसीय अवस्था में भी HF अणु H-बन्ध द्वारा संगुणित रहते हैं।

प्रश्न 9.15
लवणीय हाइड्राइड जल के साथ प्रबल अभिक्रिया करके आग उत्पन्न करती है। क्या इसमें CO2 (जो एक सुपरिचित अग्निशामक है) का उपयोग हम कर सकते हैं? समझाइए।
उत्तर:
जब लवणीय हाइड्राइड जल के साथ प्रबल अभिक्रिया करता है तो अभिक्रिया उच्च ऊष्माक्षेपी होने के कारण इसमें उत्पन्न हाइड्रोजन आग पकड़ लेती है। इस अभिक्रिया का समीकरण निम्नवत् है –
NaH(s) + H2O(aq) → NaOH(aq) + H2 (q)
CO2 को सामान्यतया अग्निशामक की तरह प्रयोग करते हैं। क्योंकि इसमें बने हाइड्रॉक्साइड से क्रिया कर काबोनेट बनाती है,
अत: CO2 को प्रयुक्त कर सकते हैं।
2NaOH(aq) + CO2 (g) → Na2SO3 (aq) + H2O (aq)

Bihar Board Class 11 Chemistry Solutions Chapter 9 हाइड्रोजन

प्रश्न 9.16
निम्नलिखित को व्यवस्थित कीजिए –

  1. CaH2, BeH2 तथा TiH2 को उनकी बढ़ती हुई विधुतचालकता के क्रम में।
  2. LiH, NaH तथा CSH को आयनिक गुण के बढ़ते हुए क्रम में।
  3. H – H, D – D तथा F – F को उनके बन्ध-वियोजन एन्थैल्पी के बढ़ते हुए क्रम में।
  4. NaH, MgH2, तथा H2O को बढ़ते हुए अपचायक गुण के क्रम में।

उत्तर:

  1. BeH2 < TiH2 < CaH2: विद्युत चालकता का बढ़ता क्रम।
  2. LiH < NaH < CSH: आयनिक गुण का बढ़ता क्रम।
  3. F – F < H – H < D – D: बन्ध-वियोजन एन्थैल्पी का बढ़ता क्रम।
  4. H2O < MgH2 < NaH: अपचायक गुण का बढ़ता क्रम।

प्रश्न 9.17
H2O तथा H2O2 की संरचनाओं की तुलना कीजिए।
उत्तर:
जल की संरचना:
गैस-प्रावस्था में जल एक बंकित अणु है। आबन्ध कोण तथा O – H आबन्ध दूरी के मान क्रमश: 104.5° तथा 95.7pm हैं, जैसा चित्र (a) में प्रदर्शित किया गया है।
अत्यधिक ध्रुवित अणु चित्र – (b) में तथा चित्र – (c) में जल के अणु में ऑर्बिटल अतिव्यापन दर्शाया गया है।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
चित्र:
(a) जल की बंकित संरचना, (b) जल-अणु द्विधुव के रूप में और (c) जल के अणु में ऑर्बिटल अतिव्यापन

हाइड्रोजन परॉक्साइड की संरचना:
हाइड्रोजन परॉक्साइड की संरचना असमतलीय (खुली पुस्तक के समान) होती है। गैसीय प्रावस्था तथा ठोस में इसकी आण्विक संरचना को चित्र में दर्शाया गया है।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
चित्र –
(a) गैसीय प्रावस्था में H2O2 की संरचना द्वितल, कोण 111.5° है।
(b) ठोस, प्रावस्था में 110K ताप पर H2O2, की संरचना द्वितल, कोण 90.2 है।

प्रश्न 9.18
जल के स्वतः प्रोटीनीकरण से आप क्या समझते हैं? इनका क्या महत्व है?
उत्तर:
जल कर स्वतः
प्रोटीनीकरण:
ऐसी अभिक्रिया जिसमें एक जल-अणु किसी दूसरे जल-अणु से प्रोटॉन ग्रहण करके H3O+ तथा OH बनाता है। जल का स्वत: प्रोटोनीकरण कहलाती है।
H2O(l) + H2O(l) → H3O+ (aq) + OH (aq)
महत्व: जल अम्ल क्षार दोनों तरह कार्य करता है। उपर्युक्त अभिक्रिया को एक साम्य स्थिरांक अर्थात् आयनिक गुणनफल (Kw) द्वारा निम्न प्रकार से दर्शाया जा सकता है –
Kw = [H3O+] [OH]
298K पर Kw = 1.0 × 10-14 mol2 L-2
इसका अम्ल-क्षार रसायन में बहुत अधिक महत्त्व है।

Bihar Board Class 11 Chemistry Solutions Chapter 9 हाइड्रोजन

प्रश्न 9.19
F2 के साथ जल की अभिक्रिया में ऑक्सीकरण तथा अपचयन के पदों पर विचार कीजिए एवं बताइए कि कौन-सी स्पीशीज ऑक्सीकृत/अपचयित होती है।
उत्तर:
फ्लुओरीन की जल के साथ अभिक्रिया निम्नवत् है –
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
चूँकि F की आ० सं० 0 से -1 तक घटती है तथा O की आ० सं० -1 से 0 तक बढ़ती है, अत: F2 ऑक्सीकरण है तथा H2O अपचायक है। H2O का O2, में ऑक्सीकरण होता है। और F2 का HF में अपचयन होता है।

प्रश्न 9.20
निम्नलिखित अभिक्रियाओं को पूर्ण कीजिए –

  1. PbS (s) + H2O2 (aq) →
  2. MnO4 (aq) + H2O2 (aq) →
  3. CaO(s) + H2O (g) →
  4. AlCl3 (g) + H2O (l) →
  5. Ca3N2 (s) + H2O (l) →

उपर्युक्त को (क)जल – अपघटन
(ख) अपचयोपचय (redox) तथा
(ग) जलयोजन अभिक्रियाओं में वर्गीकृत कीजिए।
उत्तर:

  1. PbS (s) + 4H2O2 (aq) → PbSO4 (s) + 4H2O (aq)
  2. 2MnO4- (aq) + 3H2O2 (aq) → 2MnO2 (aq) + 3O2 (g) + 2H2O (l) + 2OH (aq)
  3. CaO(s) + H2O (g) → Ca(OH)2 (s)
  4. AlCl3 (g) + 3H2O (l) → Al(OH)3 (s) + 3HCl (l)
  5. Ca3N2 (s) + 6H2O(l) → 3Ca(OH)2 (aq) + 2NH2 (g)

उपर्युक्त अभिक्रियाओं को इस प्रकार से वर्गीकृत किया जाता है –
(क) जल अपघट –
AlCl3 (g) 3H2O → (l) Al(OH)3 (s) + 3HCl (l)
Ca3N2 (s) + 6H2 O (l) → 3Ca(OH)2 (aq) + 2NH2 (g)

(ख) अपचयोपचक अभिक्रिया –
Pbs(s) + 4H2O2 (aq) → PbSO4 (s) + 4H2O (aq)
2MnO4 (aq) + 3H2O2 (aq) → 2MnO2 (aq) + 3O2 (g) + 2H2O (l) + 2OH (aq)

(ग) जलयोजन अभिक्रिया –
CaO(s) + H2O (g) → Ca(OH)2 (s)

Bihar Board Class 11 Chemistry Solutions Chapter 9 हाइड्रोजन

प्रश्न 9.21
बर्फ के साधारण रूप की संरचना का उल्लेख कीजिए।
उत्तर:
बर्फ की संरचना:
बर्फ एक अतिव्यवस्थित, त्रिविम, हाइड्रोजन आबन्धित संरचना (highly ordered, three dimensional, hydrogen bonded structure) है –
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
चित्र-बर्फ की संरचना
x – किरणों द्वारा परीक्षण से पता चला है कि बर्फ क्रिस्टल में ऑक्सीजन परमाणु चार अन्य हाइड्रोजन परमाणुओ से 276pm दूरी पर चतुष्फलकीय रूप से घिरा रहता है।
हाइड्रोजन आबन्ध बर्फ में बृहद् छिद्र एक प्रकार की खुली संरचना बनाते हैं। ये छिद्र उपयुक्त आकार के कुछ दूसरे अणुओं का अन्तरांकाश में ग्रहण कर सकते हैं।

प्रश्न 9.22
जल की अस्थायी एवं स्थायी कठोरता के क्या कारण हैं? वर्णन कीजिए।
उत्तर:
अस्थायी कठोरता:
अस्थायी कठोरता जल में कैल्शियम तथा मैग्नीशियम के हाइड्रोजन कार्बोनेट की उपस्थिति के कारण होती है। इसे उबालकर दूर किया जा सकता है।

स्थायी कठोरता:
स्थायी कठोरता जल में विलेयशील कैल्शियम तथा मैग्नीशियम के क्लोराइड तथा सल्फेट के रूप में घुले रहने के कारण होती है। इसे धावन सोडा की क्रिया से दूर किया जा सकता है।

Bihar Board Class 11 Chemistry Solutions Chapter 9 हाइड्रोजन

प्रश्न 9.23
संश्लेषित आयन विनिमयक विधि द्वारा कठोर जल के मृदुकरण के सिद्धान्त एवं विधि की विवेचना कीजिए।
उत्तर:
संश्लेषित आयन विनिमयक विधि (Synthetic lon-Exchange Method):
संश्लेषित आयन विनिमयक विधि द्वारा जल में विद्यमान कठोरता के लिए उत्तरदायी आयनों को उन अन्य आयनों द्वारा प्रतिस्थापित कर दिया जाता है जो जल की कठोरता के लिए उत्तरदायी नहीं होते। इस विधि में दो प्रकार के आयन विनिमयक प्रयोग किए जाते हैं –

  1. अकार्बनिक आयन विनिमयक तथा
  2. कार्बनिक आयन विनिमयक।

1. अकार्बनिक आयन विनिमयकःपरम्यूटिट विधि (Inorganic lon-Exchanger: Permutit Method)
इस विधि को ‘जियोलाइट/परम्पटिट विधि’ भी कहते हैं। यह व्यापारिक मात्रा में कठोर जल का मृदु करने की विधि है। इस विधि में सोडियम जियोलाइट का प्रयोग किया जाता है। यह वास्तव में सोडियम ऐलुमिनियम सिलिकेट नामक पदार्थ है। इसका सूत्र Na2 Al2 Si2 O8 है। यह या तो प्राकृतिक रूप से प्राप्त होता है अथवा इसे सोडे की राख (Na2CO3), सिलिका (SiO2) तथा ऐलुमिना (Al2O3) के मिश्रण से कृत्रिम रूप से बनाया जा सकता है।

इस मिश्रण के संगलित पदार्थ को जल से धोकर शेष बचे छिद्रित पदार्थ को ही परम्यूटिट कहते हैं। सरलता की दृष्टि से ऐलुमिनियम सिलिकेट अथवा जियोलाइट आयन (Ai2 Si2 O8) के स्थान पर ‘Z’ लिखकर सोडियम जियोलाइट को Na2Z सूत्र द्वारा प्रदर्शित किया जाता है। परम्यूटिट विधि से दोनों प्रकार की कठोरता दूर कर सकते हैं। सोडियम जियोलाइट में उपस्थिति सोडियम लवणों का यह गुण है कि ये अन्य आयनों द्वारा विस्थापित हो जाते हैं।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
चित्र – परम्यूटिट विधि से कठोर जल को मृदु बनाना।

परम्यूटिट को एक विशेष बेलनाकार पात्र में रखते हैं जिसमें मोटी रेत तथा परम्यूटिट भरा होता है। कठोर जल को इसमें से प्रवाहित करते हैं तो जल में उपस्थित कैल्सियम तथा मैग्नीशियम के लवण इसके साथ क्रिया करते हैं। सोडियम परमाणुओं के स्थान पर कैल्सियम मैग्नीशियम परमाणु आ जाते हैं तथा कैल्सियम या मैग्नीशियम परम्यूटिट बन जाता है।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

वह जल जो परम्यूटिट पर से ऊपर उठता है, वह Ca2+ व Mg2+ आयनों से मुक्त होता है; अतः वह मृदु जल होता है जिसे पाइप द्वारा बाहार निकाला जा सकता है।

परम्यूटिट का पुनः
निर्माण (Regeneration of Permutit):
कुछ समय बाद सम्पूर्ण Na2Z, CaZ व MgZ में परिवर्तित हो जाता है, परन्तु परम्यूटिट लम्बे समय तक कार्य नहीं करता। Na2Z के पुननिर्माण के लिए कठोर जल के प्रवेश को रोककर इसके स्थान पर 10% NaCl विलयन मिला दिया जाता है, तब Ca2+ व Mg2+ आयन Na+ आयनों द्वारा प्रतिस्थापित हो जाते हैं, जिससे परम्यूटिट का पुनः निर्माण हो जाता है।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
Ca+ व Mg2+ आयन जल द्वारा धो दिए जाते हैं तथा पुनर्निर्मित परम्यूटिट का उपयोग पुनः कठोर जल को मृदु करने में किया जा सकता है।

2. कार्बनिक आयन विनिमयक: संश्लेषित रेजिन विधि (Organic Ion-Exchanger : Synthetic Resin Method):
आजकल इस अधुनिक विधि का प्रयोग काफी हो रहा है। परम्यूटिट केवल उन लवण के धनायनों (Ca2+ व Mg2+) को हटाता है जो जल को कठोर बनाते हैं। कार्बनिक रसायनज्ञों ने कुछ विशेष पदार्थ विकसित किए हैं, इन्हें आयन विनिमयक रेजिन (ion-exchanger resins) कहते हैं। ये लवण में उपस्थित ऋणायनों को भी हटा सकते हैं। जो धनायनों की भाँति ही जल की कठोरता के लिए उत्तरादायी होते हैं। इस विधि से जल के मृदुकरण में निम्नलिखित दो प्रकार की रेजिन प्रयोग की जाती है –

(i) ऋणायन-विनिमयक रेजिन (Anion-exchanger resins):
वे रेजिन ऋणायन विनिमयक रेजिन कहलाते हैं, जिनमें हाइड्रोकार्बन समूह के साथ क्षारीय समूह – OH अथवा -NH2 जुड़े रहते हैं, जिन्हें – OH रेजिन के रूप में प्रदर्शित किया जाता है।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
चित्र-आयन-विनिमय रेजिन द्वारा जल की कठोरता का निवारण।

(ii) धनायन-विनिमयक रेजिन (Cation-exchanger resins):
ये हाइड्रोजन समूह ही हैं जिनके साथ अम्लीय समूह; जैसे – COOH या -SO3H समूह जुड़े रहते हैं तथा इन्हें धनायन विनिमयक रेजिन (H+ रेजिन) कहते हैं। धनायन रेजिन, जल की कठोरता के उत्तरदायी धनायनों का विनिमय करते हैं, जबकि ऋणायन रेजिन, कठोरता के लिए उत्तरदायी ऋणायनों को हटाते हैं।

इसमें एक टंकी को एक रेजिन R से लगभग आधा भरकर उसमें ऊपर से जल प्रवाहित करते हैं। रेजिन धनायनों को अवशोषित कर लेता है तथा टंकी से बाहर निकलने वाले जल में कैल्सियम और मैग्नीशियम धनायन नहीं होते; अतः जल मृदु हो जाता है। यह जल अलवणीकृत जल या अनआयनीकृत जल (demineralised water or deionised water) कहलाता है। इसके पश्चात् इस मृदु जल को दूसरे ऐसे रेजिन R+ में प्रवाहित करते हैं जो ऋणायनों को अवशोषित कर लेता है।

कार्यविदी (Working procedure):
रेजिन R विशाल कार्बनिक अणु होते हैं तथा उनमें अम्लीय क्रियात्मक समूह (-COOH, कार्बोक्सिलिक समूह) सम्मिलित रहते हैं। कठोर जल में उपस्थित धनायन Ca2+, Mg2+ इन अम्लीय क्रियात्मक समूहों द्वारा अवशोषित कर लिए जाते हैं तथा अम्ल से जल में H+ आयन आ जाते हैं।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

अब पात्र में से जो जल निकलता है, वह धनायनों से मुक्त होता है, परन्तु इसमें ऋणात्मक आयन होते हैं। रेजिन R+ में विशाल कार्बनिक अणुओं के बीच विस्थापित अमोनियम हाइड्रॉक्साइड के दाने होते हैं जिनसे क्रियात्मक हाइड्रॉक्सिल समूह (OH) संलग्न रहते हैं। कठोर जल में उपस्थित लवणों के ऋण विद्युती आयन, रेजिन R+ के अमोनियम आयनों (NH4+) से संयुक्त हो जाते हैं।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

H+ आयन; जो धनायन रेजिन टैंक से आते हैं, इन OH आयनों के साथ जुड़कर जल-अणु बना लेते हैं। अत: इस प्रकार प्राप्त जल उन सभी आयनों से मुक्त होता है जो कि जल को कठोर बनाते हैं।

रेजिन का पुनः निर्माण (Regeneration of resins):
कुछ समय बाद दोनों टैंकों में उपस्थित रेजिन पूर्णतया समाप्त हो जाते हैं; क्योंकि H+ व OH पूरी तरह प्रतिस्थापित हो जाते हैं। वे लम्बे समय तक जल की कठोरता को दूर नहीं कर सकते। इन्हें पुन: प्राप्त करने के लिए कठोर जल का प्रवेश रोक देते हैं। प्रथम टैंक में तनु HCl की धारा प्रवाहित करते हैं।

अम्ल के H+ आयन्स समाप्त हो चुके रेजिन (exhausted resin) में Ca2+ व Mg2+ को प्रतिस्थापित कर H+, रेजिन का निर्माण करते हैं।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

इसी प्रकार दूसरे टैंक में समाप्त हो चुके रेजिन को तुन सोडियम हाइड्रॉक्साइड विलयन में प्रवेश करा कर पुनर्निर्मित किया जा सकता है।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

जब दोनों टैंकों में रेजिन पुनर्निर्मित हो जाता है तो अम्ल व क्षारक का प्रवेश रोक दिया जाता है। इनके स्थान पर पुनः धनायन रेजिन टैंक में कठोर जल को प्रवेश कराया जाता है। इस प्रकार एकान्तर क्रम में क्रियाएँ चलती हैं तथा मृदु जल प्राप्त होता रहता है।

Bihar Board Class 11 Chemistry Solutions Chapter 9 हाइड्रोजन

प्रश्न 9.24
जल के उभयधर्मी स्वभाव को दर्शाने वाले रासायनिक समीकरण लिखिए।
उत्तर:
जल अम्ल तथा क्षार दोनो रूपों में कार्य करता है। अतः यह उभयधर्मी है। ब्रान्स्टेड की अवधारणा के अनुसार जल NH3 के साथ अम्ल के रूप में तथा H2S के साथ क्षार के रूप में कार्य करता
है –
H2O (l) + NH3 (aq) → NH4+ (aq) + OH (aq) … (i)
H2O (l) + H2S (aq) → H3O+ (aq) + HS (aq) … (ii)
अभिक्रिया (i) के अनुसार जल अणु एक प्रोटॉन त्यागता है जिसे NH3 ग्रहणं करके NH4+ आयन बनाता है। अभिक्रिया (ii) के अनुसार जल अणु H2O+ आयन बनाता है।

प्रश्न 9.25
हाइड्रोजन परॉक्साइड के ऑक्सीकारक एवं अपचायक रूप को अभिक्रियाओं द्वारा समझाइए।
उत्तर:
चूँकि H2O2 में ऑक्सीजन परमाणु की आ० सं० में वृद्धि तथा कमी होने के कारण, यह ऑक्सीकारक तथा अपचायक दोनों का कार्य करता है। इसे निम्नलिखित अभिक्रियाओं द्वारा समझाया जा सकता है –
1. अम्लीय माध्यम में H2O2 ऑक्सीकारक के रूप में –
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
2. अम्लीय माध्यम में अपचायक के रूप में –
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
3. क्षारीय माध्यम में ऑक्सीकारक के रूप में –
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
4. क्षारीय माध्यम में अपचायक के रूप में –
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

प्रश्न 9.26
विखनिजित जल से क्या अभिप्राय है? यह कैसे प्राप्त किया जा सकता है?
उत्तर:
वह जल जो सभी विलेयशील खनिज अशुद्धियों से पूर्णतया मुक्त हो, विखनिजित जल (demineralised water) कहलाता है। दूसरे शब्दों में धनायनों (Ca2+, Mg2+ आदि) तथा ऋणायनों (Cl, SO42-, HCO3 आदि) से पूर्णतया विमुक्त जल विखनिजित जल कहलाता है।

विखनिजित जल को आयन-विनिमयक रेजिन विधि से प्राप्त किया जाता है। इस विधि के अन्तर्गत आयन-विनिमयक रेजिनों द्वारा जल में उपस्थित सभी धनायनों तथा ऋणायनों को हटा दिया जाता है। इसके लिए सर्वप्रथम कठोर जल को धनायन विनियम परिवर्तक (रेजिनयुक्त) में प्रवाहित किया जाता है, यहाँ SO3H तथा – COOH समूहों वाले विशाल काबनिक अणु (रेजिन), Na+, Ca2+, Mg2+ तथा अन्य धनायनों को हटाकर H+ आयनों को प्रतिस्थापित कर देते हैं।

इस प्रकार प्राप्त जल को पुनः ऋणायन विनिमय परिवर्तक से गुजारा जाता है, जहाँ – NH2 समूह वाले विशाल कार्बनिक अणु (रेजिन) Cl SO42-, HCO3 आदि ऋणायनों को हटाकर OH आयनों को प्रतिस्थापित कर देते हैं। जल के उत्तरोत्तर धनायन-विनिमयक (H+ आयन के रूप में) तथा ऋणायन-विनिमयक (OH के रूप में) रेजिन से प्रवाहित करने पर शुद्ध विखनिजित तथा विआयनित जल प्राप्त किया जाता है।

Bihar Board Class 11 Chemistry Solutions Chapter 9 हाइड्रोजन

प्रश्न 9.27
क्या विखनिजित या आसुत जल पेय-प्रयोजनों में उपयोगी हैं? यदि नहीं तो इसे उपयोगी कैसे बनाया जा सकता है?
उत्तर:
विखनिजित या आसुत जल पेय-प्रयोजनों में उपयोगी नहीं है। यह स्वादहीन होता है। इसके अतिरिक्त कुछ आयन जैसे –
Na+, K+ आदि शरीर के लिए अनिवार्य हैं। इसे उपयोगी बनाने के लिए इसमें कुछ लवण; जैसे-सोडियम क्लोराइड, पोटैशियम क्लोराइड आदि मिलाने चाहिए।

प्रश्न 9.28
जीवमण्डल एवं जैव-प्रणालियों में जल की उपादेयता को समझाइए।
उत्तर:
जीवमण्डल एवं जैव-प्रणालियों में जल की उपादेयता (Usefulness of Water in Bio-sphere and Biological systems):
सभी सजीवों का एक वृहद् भाग जल द्वारा निर्मित है। मानव शरीर में लगभग 65 प्रतिशत एवं कुछ पौधों में लगभग 95 प्रतिशत जल होता है। जीवों को जीवित रखने के लिए जल एक महत्त्वपूर्ण यौगिक है। संघनित प्रावस्था (द्रव तथा ठोस अवस्था) में जल के असामान्य गुणों का कारण तथा अन्य तत्वों के हाइड्राइड H2S तथा H2Se की तुलना में जल का उच्च हिमांक, उच्च क्वथनांक, उच्च वाष्पन ऊष्मा, उच्च संलयन ऊष्मा का कारण इसमें हाइड्रोजन-बन्धन का उपस्थित होना है।

अन्य द्रवों की तुलना में जल की विशिष्ट ऊष्मा, तापीय चालकता, पृष्ठ-तनाव, द्विध्रुव आघूर्ण तथा पराविधुतांक के मान उच्च होते हैं। इन्हीं गुणों के कारण जीवमण्डल में जल की महत्त्वपूर्ण भूमिका है। जल की उच्च वाष्पन ऊष्मा उच्च ऊष्माधारिता ही जीवों के शरीर तथा जलवायु के सामान्य ताप को बनाए रखने के लिए उत्तरदायी है। वनस्पतियों एवं प्राणियों के उपापचय (metabolism) में अणुओं के अभिगमन के लिए जल एक उत्तम विलायक का कार्य करता है। जल ध्रुवीय अणुओं के साथ हाइड्रोजन बन्ध बनाता है जिससे सहसंयोजक यौगिक; जैसेऐल्कोहॉल तथा कार्बोहाइड्रेट यौगिक जल में विलेय होते हैं। अत: जैव-प्रणालियों के लिए भी यह आवश्यक होता है।

Bihar Board Class 11 Chemistry Solutions Chapter 9 हाइड्रोजन

प्रश्न 9.29
जल का कौन-सा गुण इसे विलायक के रूप में उपयोगी बनाता है? यह किस प्रकार के यौगिक –

  1. घोल सकता है और
  2. जल-अपघटन कर सकता है?

उत्तर:
जल के गुण (Properties of Water):
जल के निम्नलिखित गुण इसे विलायक के रूप में अतिमहत्त्वपूर्ण बनाते हैं –

  1. इसकी वाष्पन एन्थैल्पी तथा ऊष्मा-धारिता उच्च होती है।
  2. यह ताप की एक दीर्घ परास (0°C से 100° C तक) के अन्तर्गत द्रव-अवस्था में होता है।
  3. यह ध्रुवी प्रकृति का होता है तथा इसका पराविद्युतांक उच्च (78.39) होता है।
  4. अन्य यौगिकों के साथ हाइड्रोजन बन्ध बना सकता है।

जल विलायक के रूप में (Water as a Solvent):

  1. यह हाइड्रोजन बन्ध के कारण ध्रुवी पदार्थों तथा कुछ कार्बनिक यौगिकों को घोल सकता है। यह आयनिक पदार्थों तथा उन यौगिकों को घोल सकता है जो इसके साथ H – बन्ध बनाते हैं।
  2. इसमें उपस्थित ऑक्सीजन की अनेक तत्वों से अत्यधिक बन्धुता के कारण यह सहसंयोजी यौगिकों को जल-अपघटित कर देता है। यह ऑक्साइडों, हैलाइडों, फॉस्फाइडों, नाइट्राइडों आदि को जल-अपघटित कर देता है।

प्रश्न 9.30
H2O एवं D2O के गुणों को जानते हुए क्या आप मानते हैं कि D2O का उपयोग पेय-प्रयोजनों के रूप में लाया जा सकता है?
उत्तर:
नहीं, भारी जल (D2O) पेय-प्रयोजनों के रूप में उपयोगी नहीं होता है। इसके निम्नलिखित कारण हैं –

  1. भारी अणु होने के कारण, D2O में आयनन H2O की तुलना में एक-तिहाई ही होता है।
  2. D2O में बन्ध H2O की तुलना में अत्यन्त धीमी गति से टूटते हैं।
  3. कम पराविद्युतांक के कारण इसमें आयनिक पदार्थ जल की तुलना में कम विलेय होते हैं।

उपर्युक्त कारणों से भारी जल शरीर में होने वाली अपचयोपचयी अभिक्रियाओं को साधारण जल की तुलना में अति मन्द दर से करता है जिससे से असन्तुलित हो जाती हैं। अतः यह स्वास्थ्य के लिए हानिकारक होता है। इसके अतिरिक्त इससे बीजों का अंकुरण रुक जाता है, इसमें रहने वाले टैडपोल तथा अन्य छोटे-छोटे जीव मर जाते हैं तथा यह पेड़-पौधों का विकास रोक देता है।

Bihar Board Class 11 Chemistry Solutions Chapter 9 हाइड्रोजन

प्रश्न 9.31
‘जल अपघटन’ (Hydrolysis) तथा ‘जल योजन’ (Hydration) पदों में क्या अन्तर है?
उत्तर:
जल-अपघटन:
ऐसी अभिक्रिया जिसमें एक पदार्थ अम्लीय अथवा क्षारीय अथवा उदासीन माध्यमों में जल से क्रिया करे, जल-अपघटन कहलाता है।

उदाहरणार्थ:
एल्यूमीनियम क्लोराइड (AlCl3) जल अपघटित हो जाता है।
ACl3 + 3H2O → Al(OH)3 + 3HCl
अभिक्रिया के पश्चात् प्राप्त विलयन का pH बदल जाता है।

जल-योजन:
किसी पदार्थ के ऐसे गुण को जिसमें क्रिस्टलन जल के अणु ग्रहण करके जल योजित हो जाये, जल-योजन कहते हैं।

उदाहरणार्थ:
सफेद रंग का निर्जलीय कॉपर सल्फेट (CuSO4) जल के पाँच अणु ग्रहण करके नीले रंग का जलयोजित कॉपर सल्फेट (AuSO4.5H2O) बनाता है। अभिक्रिया पश्चात् प्राप्त विलयन का pH अपरिवर्तित रहता है।

प्रश्न 9.32
लवणीय हाइड्राइड किस प्रकार कार्बनिक यौगिकों से अति सूक्ष्म जल की मात्रा को हटा सकते हैं?
उत्तर:
लवणीय हाइड्राइडों में H2O के लिए अत्यधिक बन्धुता होती है। लवणीय हाइड्राइड जैसे – NaH, H आयनों को मुक्त करता है जो प्रबल ब्रान्स्टेड क्षारकों की भाँति कार्य करते हैं (H4O एक दुर्बल ब्रान्स्टेड अम्ल होता है)। NaH जल से संयुक्त होकर हाइड्रोजन गैस मुक्त करता है। लवणीय हाइड्राइडों का यह गुण कार्बनिक यौगिकों से अति सूक्ष्म जल की मात्रा को हटाने में प्रयुक्त होता है।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

Bihar Board Class 11 Chemistry Solutions Chapter 9 हाइड्रोजन

प्रश्न 9.33
परमाणु क्रमांक 15,19, 23 तथा 44 वाले तत्व यदि डाइहाइड्रोजन से अभिक्रिया कर हाइड्राइड बनाते हैं तो उनकी प्रकृति से आप क्या आशा करेंगे? जल के प्रति इनके व्यवहार की तुलना कीजिए।
उत्तर:
परमाणु क्रमांक 15 वाला तत्व फॉस्फोरस (P) है। इसका हाइड्राइड PH3 है जो सहसंयोजी होता है। परमाणु क्रमांक 19 वाला तत्व पोटैशियम (K) है। इसका हाइड्राइड KH3 है जो आयनिक होता है। परमाणु क्रमांक 23 वाला तत्व वैनेडियम (V) है। इसका हाइड्राइड धात्विक है। परमाणु क्रमांक 44 वाला तत्व रूथेनियम (Ru) है। इसका हाइड्राइड धात्विक है।

जल के प्रति व्यवहार:
P का सहसंयोजी हाइड्राइड PH3 है जो जल में अल्प विलेय है –
K का आयनिक हाइड्राइड KH है जो जल से क्रिया करके डाइहाइड्रोजन गैस देता है।
KH(s) + H2O (aq) → KOH(aq) + H2 (g)
V तथा Ru धात्विक हाइड्राइड बनाते हैं जो जल को संगुणित करते हैं।

प्रश्न 9.34
जल एल्यूमीनियम (III) क्लोराइड एवं पोटैशियम क्लोराइड को अलग-अलग –

  1. सामान्य जल
  2. अम्लीय जल
  3. क्षारीय जल से अभिकृत कराया जाएगा तो आप किन-किन विभिन्न उत्पादों की आशा करेंगे? जहाँ आवश्यक हो, वहाँ रासायनिक समीकरण दीजिए।

उत्तर:
1. सामान्य जल में:
एल्यूमीनियम (III) क्लोराइड निम्नलिखित अभिक्रिया देता है –
AlCl3 + 3H2O → Al(OH)3 + 3HCI
KCI जल में घुल कर जलयोजित आयन बनायेगा।
KCl (s) + H2O → K+ (aq) + Cl (aq)

2. अम्लीय जल में:
एल्यूमीनियम (III) क्लोराइड अम्लीय जल अपघटित होकर Al3+ तथा Cl आयन बनायेगा।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

3. क्षारीय जल में:
एल्यूमीनियम (III) क्लोराइड क्षारीय जल में अपघटित होकर टेट्राऑक्साइड-ऐल्यूमिनेट बनाता है।
AlCl3 + 2KOH → Al(OH)3 + 3KCI
Al(OH)3 + OH → [Al(OH)4]
KCl पर इसका कोई प्रभाव नहीं पड़ता।

Bihar Board Class 11 Chemistry Solutions Chapter 9 हाइड्रोजन

प्रश्न 9.35
H2O2 विरंजन कारक के रूप में कैसे व्यवहार करता है? लिखिए।
उत्तर:
H2O2 अपघटित होकर नवजात ऑक्सीजन देता है, जो रंगीन पदार्थों को रंगहीन कर देती है। इसकी विरंजन क्रिया ऑक्सीकरण गुण के कारण है।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
ऊन, पंख, बाल, रेशम आदि इसकी सहायता से रंगहीन हो जाते हैं।

प्रश्न 9.36
निम्नलिखित पदों से आप क्या समझते हैं –

  1. हाइड्रोजन अर्थव्यवस्था
  2. हाइड्रोजनीकरण
  3. सिन्गैस
  4. भाप अंगार गैस सृति अभिक्रिया तथा
  5. ईंधन सेल।

उत्तर:
1. हाइड्रोजन अर्थव्यवस्था:
दहन के फलस्वरूप अनेक विषाक्त गैसें –
CO2N2 तथा सल्फर के ऑक्साइड वायुमण्डल में मिल जाते हैं। इस समस्या से निपटने के लिए भावी विकल्प ‘हाइड्रोजन अर्थव्यवस्था’ है। हाइड्रोजन अर्थव्यवस्था का मूल सिद्धान्त ऊर्जा का द्रव हाइड्रोजन अर्थव्यवस्था का मूल सिद्धान्त ऊर्जा का द्रव हाइड्रोजन अथवा गैसीय हाइड्रोजन के रूप में अभिगमन तथा भण्डारण है।

हाइड्रोजन अर्थव्यवस्था का मुख्य ध्येय तथा लाभ-ऊर्जा का संचरण विद्युत ऊर्जा के रूप में न होकर हाइड्रोजन के रूप में होना है। हमारे देश में पहली बार अक्टूबर, 2005 में आरम्भ परियोजना में डाइहाइड्रोजन से चालित वाहनों के ईंधन के रूप में प्रयुक्त किया गया। प्रारम्भ में चौपहिया वाहन के लिए 5% डाइहाइड्रोजन मिश्रित CNG को प्रयोग किया गया। बाद में डाइहाइड्रोजन की प्रतिशतता धीरे-धीरे अनुकूलतम स्तर तक बढ़ाई जाएगी।

2. हाइड्रोजनीकरण:
ऐसी अभिक्रिया जिसमें असंतृप्त कार्बनिक यौगिक हाइड्रोजन के संयोग से संतृप्त यौगिक बनाते हैं, हाइड्रोजनीकरण अभिक्रिया कहलाती है। यह अभिक्रिया उत्प्रेरक की उपस्थिति में होती है। इस अभिक्रिया का उपयोग निम्नवत् है –

वनस्पति तेलों का हाइड्रोजनीकरण:
473K पर Ni उत्प्रेरक की उपस्थिति में वनस्पति तेलों में H2 गैस प्रवाहित करने पर वनस्पति घी बनता है –
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

3. सिन्गैस:
हाइड्रोकार्बन अथवा कोक की उच्च ताप पर एवं उत्प्रेरक की उपस्थिति में भाप से अभिक्रिया कराने पर डाइहाइड्रोजन प्राप्त होती है।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

CO एवं H2 के मिश्रण को वाटर गैस कहते हैं। CO एवं H2 का यह मिश्रण मेथेनॉल तथा अन्य कई हाइड्रोकार्बनों के संश्लेषण में काम आता है। अत: इसे ‘संश्लेषण गैस’ या ‘सिन्गैस’ (Syngas) भी कहते हैं। आजल सिन्गैस वाहितमल (sewage waste), अखबार, लकड़ी का बुरादा, लकड़ी की छीलन आदि से प्राप्त की जाती है। कोल से सिन्गैस का उत्पादन करने की प्रक्रिया को ‘कोलगैसीकरण’ (Coal-gasification)
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन

4. भाप अंगार गैस साति अभिक्रिया:
सिनस CO गैस तथा आयरन क्रोमेट उत्प्रेरक की उपस्थिति में भाप की क्रिया कराने पर डाइहाइड्रोजन के उत्पादन की वृद्धि की जा सकती है।
Bihar Board Class 11 Chemistry chapter 9 हाइड्रोजन
इस अभिक्रिया को भाप-अंगार गैस सृति अभिक्रिया कहते हैं। डाइहाइड्रोजन के उत्पाद स्रोत शैल रसायन, जलविलयनों के विद्युत-अपघटन आदि हैं।

5. ईंधन सेल:
ऐसा प्रक्रम जिसमें ईंधन को रासायनिक ऊर्जा विद्युत ऊर्जा में बदलता है, ईंधन सेल कहलाता है। इसका उपयोग ईंधन सेलों में विद्युत उत्पादन में करते हैं।